

 SQL COMMANDS

 Prepared By

 Pandeeswari M

 CONTENTS

1.FUNDAMENTALS OF SQL

2.FILTERING COMMANDS

3.ORDERING COMMANDS

4.ALIAS

5.AGGREGATE COMMANDS

6.GROUP BY COMMANDS

7.CONDITIONAL STATEMENT

8.JOINS

9.SUBQUERY

10.VIEW & INDEX

11.STRING FUNCTIONS

12.MATHEMATICAL FUNCTIONS

13. DATE-TIME FUNCTIONS

14.PATTERN MATCHING(regex)

15.DATA TYPE CONVERSION FUNCTIONS

DQL(Data Query Language)

 To fetch the data from the database

 Example: SELECT

DML(Data Manipulation Language)-

 To modify the database objects

Example: INSERT,UPDATE,DELETE

DDL(Data Definition Language)

 To create & modify database objects

Example: CREATE,DROP,ALTER,TRUNCATE

 1.Fundamentals of SQL

CREATE

 CREATE statement is used to create a table

Syntax:

 CREATE TABLE ‘’TABLE_NAME’’(

 ‘’COLUMN1’’ ‘’DATA_TYPE’’ CONSTRAINTS,

 ‘’COLUMN2’’ ‘’DATA_TYPE’’ CONSTRAINTS,

 ‘’COLUMN3’’ ‘’DATA_TYPE’’ CONSTRAINTS,

 ………………………………………………………………..

 ‘’COLUMN N’’ ‘’DATA_TYPE’’ CONSTRAINTS

);

INSERT

 INSERT statement is used insert new data

into the table

Syntax:

 INSERT INTO

“TABLE_NAME” (COL1, COL2, ……..COL_N)

VALUES (Col_val_1,Col_val_2, ……. Col_val_N);

Import data from file(PostgreSQL)

For csv file

COPY TABLE_NAME(column1, column2,…) FROM

FILE_PATH DELIMITER ‘ , ’ CSV HEADER;

For txt file

COPY TABLE_NAME(column1, column2,…) FROM

FILE_PATH DELIMITER ‘ , ’ ;

SELECT

 SELECT statement is used to retrieve data from

the table

Syntax

 SELECT * FROM “TABLE_NAME”;

For select one column

 SELECT “COLUMN_NAME” FROM “TABLE_NAME”;

For select multiple columns

 SELECT “COLUMN1,COLUMN2,…”

 FROM “TABLE_NAME”;

For select all columns

 SELECT * FROM “TABLE_NAME”;

DISTINCT

 DISTINCT keyword is used to eliminate all

duplicate records & fetch only unique records

Syntax:

 SELECT DISTINCT(*) FROM “TABLE_NAME”;

WHERE

 WHERE clause is used to filter a records

Syntax:

 SELECT “COLUMN_NAME(S)”

 FROM “TABLE_NAME “

 WHERE CONDITION;

AND/OR

 The AND/OR is used to combine multiple conditions

Syntax:

 SELECT “COLUMN_NAMES(s)”

 FROM “TABLE_NAME”

 WHERE CONDITION AND/OR CONDITION;

UPDATE

 It is used to modify the existing data in the

table

Syntax:

 UPDATE “TABLE_NAME”

 SET COL_1=VAL_1,COL_2=VAL_2,…

 WHERE CONDITION;

DELETE

 It is used to delete existing records in the table

Syntax:

For delete all rows

 DELETE FROM “TABLE_NAME”;

For delete single/multiple row(s)

 DELETE FROM “TABLE_NAME “

 WHERE CONDITION;

ALTER

 It is used to change the definition or structure

of the table

Syntax:

ADD COLUMN

 ALTER TABLE “ TABLE_NAME”

 ADD “COLUMN_NAME “ “DATA_TYPE”;

DROP COLUMN

 ALETR TABLE “TABLE_NAME”

 DROP “COLUMN_NAME”;

MODIFY DATA TYPE

 ALTER TABLE “TABLE_NAME”

ALTER COLUMN “COL_NAME” TYPE NEW_DATA_TYPE;

RENAME COLUMN

 ALTER TABLE “TABLE_NAME”

 RENAME COLUMN “COL_NAME” TO “NEW_NAME”;

ADD CONSTRAINTS

 ALTER TABLE “TABLE_NAME”

 ADD CONSTRAINT COL_NAME CHECK CONDITION;

 2.Filtering Commands

IN

 Used to reduce multiple OR logical operator in

SELECT,DELETE,INSERT & UPDATE statements

Syntax:

 SELECT “COL_NAME” FROM “TABLE_NAME”

 WHERE “COL_NAME” IN (‘VAL1’, ’VAL2’,…);

BETWEEN

 Used to retrieve data within a given range

Syntax:

SELECT “COL_NAME(S)” FROM “TABLE_NAME”

WHERE “COL_NAME” BETWEEN “VAL1” AND “VAL2”;

LIKE

 Used to perform pattern matching/regex using

wildcards(% , _)

 % - match any string of any length

 _ - match on a single character

Syntax:

SELECT “COL_NAME” FROM “TABLE_NAME”

WHERE “COL_NAME” LIKE ‘PATTERN’;

 3.Ordering Commands

ORDER BY

 Used to sort the data & it is only used in

SELECT statement

Syntax:

 SELECT “COL_NAME(s)” FROM “TABLE_NAME”

 ORDER BY “COL_NAME” ASC/DESC;

LIMIT

 Used to limit the number of records based on a

given limit

Syntax:

SELECT “COL_NAME(S)” FROM “TABLE_NAME”

[WHERE & ORDER BY – Optional]

LIMIT “LIMIT_VALUE”;

 4.ALIAS

AS

 Used to assign an alias to the column

Syntax:

SELECT “COL_NAME” as “COL_ALIAS”

 FROM “TABLE_NAME”;

 5.AGGREGATE COMMANDS

COUNT

 Used to count the expression

Syntax:

SELECT COUNT(COL_NAME) FROM “TABLE_NAME”;

SUM

 Used to sum the expression

Syntax:

SELECT SUM(COL_NAME) FROM “TABLE_NAME”;

AVG

 Used to average the expression

Syntax:

SELECT AVG(COL_NAME) FROM “TABLE_NAME”;

MIN

 Used to retrieve the minimum value

Syntax:

 SELECT MIN(COL_NAME) FROM “TABLE_NAME”;

MAX

 Used to retrieve the maximum value

Syntax:

SELECT MAX(COL_NAME) FROM “TABLE_NAME”;

 6.GROUP BY COMMANDS

GROUP BY

 GROUP BY clause is used to group the results by

one or more columns

Syntax:

 SELECT “COL_1”, “COL_2”,…… FROM “TABLE_NAME”

 GROUP BY “COL_NAME”;

HAVING

 HAVING clause is added to SQL because the

WHERE keyword cannot be used with aggregate

functions

Syntax:

 SELECT “COL_1”, “COL_2”,…… FROM “TABLE_NAME”

 GROUP BY “COL_NAME”

 HAVING ‘CONDITION’;

 7.CONDITIONAL STATEMENT

CASE

 CASE expression is a conditional expression

Syntax:

 CASE

 WHEN CONDITION THEN RESULT

 [WHEN CONDITION THEN RESULT]

 [WHEN CONDITION THEN RESULT]

 ELSE RESULT

 END

 8.JOINS

JOINS used to fetch data from multiple tables

TYPES:

INNER JOIN

 INNER JOIN produces only the set of records

that match in table A and table B

Syntax:

 SELECT COL1,COL2,…..

 FROM “TABLE_1”

 INNER JOIN “TABLE_2”

ON TABLE_1. COMMON_COL = TABLE_2. COMMON_COL;

LEFT JOIN

 LEFT JOIN returns all the rows in the table

A(Left),even if there is no matches in the table B(Right)

Syntax:

 SELECT COL_1,COL_2,…

 FROM “TABLE_1”

 LEFT JOIN “TABLE_2”

ON TABLE_1. COMMON_COL = TABLE_2. COMMON_COL;

RIGHT JOIN

 RIGHT JOIN returns all the rows in the

table B(Right),even if there is no matches in the table

A(left)

Syntax:

 SELECT COL_1,COL_2,…

 FROM “TABLE_1”

 RIGHT JOIN “TABLE_2”

ON TABLE_1.COMMON_COL = TABLE_2. COMMON_COL;

FULL JOIN

 FULL JOIN combines the results of both

right & left join

Syntax:

 SELECT COL_1,COL_2,…

 FROM “TABLE_1”

 FULL JOIN “TABLE_2”

ON TABLE_1.COMMON_COL = TABLE_2. COMMON_COL;

CROSS JOIN

 CROSS JOIN creates Cartesian product

between two sets

Syntax:

 SELECT TAB1.COL,TAB2.COL,…..

 FROM “TABLE_1”, “TABLE_2”,……..

EXCEPT

 Used to fetch all the data from table A except that

matches with table B

Syntax:

 SELECT COL1,COL2,……..

 FROM TABLE_A [WHERE]

 EXCEPT

 SELECT COL_1,COL_2,……

 FROM TABLE_B [WHERE];

UNION

 Used to combine two or more SELECT statements

Syntax:

 SELECT COL1,COL2,……..

 FROM TABLE_A [WHERE]

 UNION

 SELECT COL_1,COL_2,……

 FROM TABLE_B [WHERE];

SUBQUERY

 SUBQUERY is a query within a query

Syntax:

SUBQUERY is in WHERE clause

 SELECT “COL_1” FROM “TABLE_NAME_1”

 WHERE “COL_2” [operator]

 (SELECT “COL_3” FROM “TABLE_NAME_2”

 WHERE CONDITION);

VIEW

 VIEW is a virtual table created by a query

joining one or more tables

Syntax:

 CREATE[OR RESPONSE] view_name AS

 SELECT “COL_NAME(S)”

 FROM “TABLE_NAME”

INDEX

 An INDEX creates an entry for each value that

appears in the indexed column

Syntax:

 CREATE[UNIQUE] INDEX “index_name”

 ON “TABLE_NAME”

 (index_col1 [ASC/DESC],………..

 11.STRING FUNCTIONS

LENGTH:

 LENGTH function retrieves the length of the

specified string

Syntax:

 LENGTH(‘string’)

UPPER/LOWER

 UPPER/LOWER function converts all the

characters in the specified string to

uppercase/lowercase

Syntax:

 upper(‘string’)

 lower(‘string’)

REPLACE

 REPLACE function replaces all the

occurrences of the specified string

 Syntax:

 REPLACE(‘string’, ’from string’, to string’)

TRIM

 TRIM function removes all specified characters

either from beginning or end of the string or both

Syntax:

 TRIM([Leading|Trailing|Both] [trim char] from string)

RTRIM

 RTRIM function removes all specified characters

from RHS of the string

Syntax:

 RTRIM(‘string’, trim char)

LTRIM

 LTRIM function removes all specified characters

from LHS of the string

Syntax:

 LTRIM(‘string’, trim char)

CONCATENATION

 || operator used to concatenate two or more

strings

Syntax:

 ‘string_1’ || ‘string_2’ || ‘string_3’

SUBSTRING

 SUBSTRING function used to extract substring

from a string

Syntax:

 SUBSTRING(‘string’ [start position]

 [substring length]);

STRING_AGG

 String aggregate function concatenates input

values into a string, separated by a delimiter

Syntax

STRING_AGG(‘expression’, delimiter)

12.MATHEMATICAL FUNCTIONS

CEIL

 CEIL function returns the smallest integer value

which is greater than or equal to a number

Syntax:

 CEIL(number)

FLOOR

 FLOOR function returns the largest integer value

which is less than or equal to a number

Syntax:

 FLOOR(number)

RANDOM

 RANDOM function used to generate random

number between 0 & 1 (1 will be excluded)

Syntax:

 RANDOM();

SETSEED

 SETSEED function used to set a seed for the next

time that we call the RANDOM function

Syntax:

 SETSEED(seed)

[seed can have a value between 1 and -1(both are

inclusive]

ROUND

 ROUND function rounds a number to a specified

number of decimal places

Syntax:

 ROUND(number)

POWER

 POWER function returns m raised to the nth

power

Syntax:

 POWER(m,n)

 13. DATE-TIME FUNCTIONS

CURRENT_DATE

 CURRENT_DATE function returns the current

date

Syntax:

 CURRENT_DATE()

CURRENT_TIME

 CURRENT_TIME function returns the current

time with the time zone

Syntax:

 CURRENT_TIME()

CURRENT_TIMESTAMP

 CURRENT_ TIMESTAMP function returns the

current date & current time with the time zone

Syntax:

 CURRENT_ TIMESTAMP ()

AGE

 AGE function returns the difference between two

dates

Syntax:

 AGE(date1,date2)

EXTRACT

 EXTRACT function extract specified parts

from date

 Syntax:

 EXTRACT(‘unit’ FROM ‘date’)

[unit will be day,month,year,doy,decade,hour,minute,

second,etc.,]

 14.PATTERN MATCHING

There are three different approaches to pattern

matching

• Using LIKE

• Using SIMILAR TO

• Using Regular Expression

• | denotes alternation (either of two alternatives).
• * denotes repetition of the previous item zero or more times.
• + denotes repetition of the previous item one or more times.
• ? denotes repetition of the previous item zero or one time.
• {m} denotes repetition of the previous item exactly m times.
• {m,} denotes repetition of the previous item m or more times.
• {m,n} denotes repetition of the previous item at least m and not

more than n times.
• Parentheses () can be used to group items into a single logical

item.
• A bracket expression [...] specifies a character class,

15.DATA TYPE CONVERSION FUNCTIONS

TO_CHAR

 TO_CHAR function converts number/date to

String

Syntax:

 TO_CHAR(value,format-mask)

TO_DATE

 TO_DATE function converts string to date

Syntax:

 TO_DATE(string,format-mask)

T0_NUMBER

 T0_NUMBER function converts string to date

Syntax:

 TO_NUMBER(string,format-mask)

Format Description

9 Numeric value with the specified number of digits

0 Numeric value with leading zeros

.
(period)

decimal point

D decimal point that uses locale

,
(comma)

group (thousand) separator

Format Description

FM Fill mode, which suppresses padding blanks and leading zeroes.

PR Negative value in angle brackets.

S Sign anchored to a number that uses locale

L Currency symbol that uses locale

G Group separator that uses locale

MI Minus sign in the specified position for numbers that are less than
0.

PL Plus sign in the specified position for numbers that are greater
than 0.

SG Plus / minus sign in the specified position

RN Roman numeral that ranges from 1 to 3999

TH or th Upper case or lower case ordinal number suffix

Pattern Description

Y,YYY year in 4 digits with comma

YYYY year in 4 digits

YYY last 3 digits of year

YY last 2 digits of year

Y The last digit of year

IYYY ISO 8601 week-numbering year (4 or more digits)

IYY Last 3 digits of ISO 8601 week-numbering year

IY Last 2 digits of ISO 8601 week-numbering year

I Last digit of ISO 8601 week-numbering year

BC, bc, AD or ad Era indicator without periods

B.C., b.c., A.D. ora.d. Era indicator with periods

MONTH English month name in uppercase

Month Full capitalized English month name

Month Full lowercase English month name

MON Abbreviated uppercase month name e.g., JAN, FEB, etc.

Mon Abbreviated capitalized month name e.g, Jan, Feb, etc.

Mon Abbreviated lowercase month name e.g., jan, feb, etc.

MM month number from 01 to 12

DAY Full uppercase day name

Day Full capitalized day name

Day Full lowercase day name

DY Abbreviated uppercase day name

Dy Abbreviated capitalized day name

Dy Abbreviated lowercase day name

DDD Day of year (001-366)

IDDD Day of ISO 8601 week-numbering year (001-371; day 1 of
the year is Monday of the first ISO week)

DD Day of month (01-31)

D Day of the week, Sunday (1) to Saturday (7)

ID ISO 8601 day of the week, Monday (1) to Sunday (7)

W Week of month (1-5) (the first week starts on the first day
of the month)

WW Week number of year (1-53) (the first week starts on the
first day of the year)

IW Week number of ISO 8601 week-numbering year (01-53;
the first Thursday of the year is in week 1)

CC Century e.g, 21, 22, etc.

J Julian Day (integer days since November 24, 4714 BC at
midnight UTC)

RM Month in upper case Roman numerals (I-XII; >

Rm Month in lowercase Roman numerals (i-xii; >

HH Hour of day (0-12)

HH12 Hour of day (0-12)

HH24 Hour of day (0-23)

MI Minute (0-59)

SS Second (0-59)

MS Millisecond (000-999)

US Microsecond (000000-999999)

SSSS Seconds past midnight (0-86399)

AM, am, PM or pm Meridiem indicator (without periods)

A.M., a.m., P.M. or
p.m.

Meridiem indicator (with periods)

